Sunday, April 19, 2020

One Of The Smartest People Ever To Live, Albert Einstein, Changed Our

One of the smartest people ever to live, Albert Einstein, changed our society's development forever with his views, theories, and developments. Einstein was born in Ulm, Germany on March 14, 1879. He was the only son of Hermann and Pauline Kech Einstein. He spent his youth in Munich, where his family owned a small electrical equipment plant. He did not talk until the age of three and by the age of nine, was still not fluent in his native language. (Discovering World History) His parents were actually concerned the he might be somewhat mentally retarded. His parent's concerns aside, even as a youth Einstein showed a brilliant curiosity about nature and an ability to understand difficult mathematical concepts. At the age of 12 he taught himself Euclidian Geometry. Einstein hated the dull regimental and unimaginative spirit of school in Munich. (Albert Einstein's Early Life) His parents wisely thought to transfer him out of that environment. Although Einstein's family was Jewish, he was sent to a Catholic elementary school from 1884 to 1889. He was then enrolled at the Luitpold Gymnasium in Munich. In 1894, Hermann Einstein's business failed and the family moved to Pavia, near Milan, Italy. Einstein was left behind in Munich to allow him to finish school. Such was not to be the case, however, since he left the gymnasium after only six more months. Einstein's biographer, Philip Frank, explains that Einstein so thoroughly despised formal schooling that he devised a scheme by which he received a medical excuse from school on the basis of a potential nervous breakdown. He then convinced a mathematics teacher to certify that he was adequately prepared to begin his college studies without a high school diploma. Other biographies, however, state that Einstein was expelled from the gymnasium on the grounds that he was a disruptive influence at the school. (Discovering World History) In 1895, Einstein thought himself ready to take the entrance examination for the Eldgenossiche Technische Hochschule (ETH: Swiss Federal Polytechnic School, or Swiss Federal Institute of Technology), where he planned to major in electrical engineering. When he failed that examination, Einstein enrolled at a Swiss cantonal high school in Aarau. He found the more democratic style of instruction at Aarau much more enjoyable than his experience in Munich and soon began to make rapid progress. He took the entrance examination for ETH a second time in 1896, passed, and was admitted to school, although other sources state that he was admitted without examination on the basis of his diploma from Aarau. ETH had little appeal to Einstein, however. He rarely attended classes and hated studying for examinations, although he did graduate with a secondary teaching degree in 1900. He became a teacher of mathematics and physics in secondary school. (Albert Einstein's Early Life) As a teacher Einstein was unable to find a regular teaching job. Instead he was a tutor in a private school in Schaffhausen. With his extra time in 1901, Einstein published his first scientific paper, "Consequences of Capillary Phenomena.? In 1902 he was hired at the patent office until 1909. During this period of time, he was wed to his first wife Mileva Marie and had two sons and a daughter. There are no records of his daughter due to the fact that she was given up for adoption, they simply did not want her. (Discovering World History) In 1905, during a single year, Einstein produced a series of three consecutive papers. These are among the most important in twentieth-century physics, and perhaps in all of the recorded history of science for they revolutionized the way scientists look at the nature of space, time, and matter. (Discovering World History) The series of three papers dealt with the nature of particle movement known as Brownian motion, the quantum nature of electromagnetic radiation as demonstrated by the photoelectric effect, and the special theory of relativity (Discovering Science). The first paper of the series, "On the Movement of Small Particles Suspended in Stationary Liquid Demanded by the Molecular-Kinetic Theory of Heat,? dealt with a phenomenon first observed by Scottish Botanist Robert Brown in 1827. Brown stated that tiny particles, such as dust particles, move about with a zigzag motion when suspended in water. The visible movement of